IIGHT EMITTIHG FEGEGARO IISFLAS FANEL KITS

AN ロPEN－SロURCE HARDWARE＋SGFTWARE PRロJECT DESIGNED BY

Eivel eltad Secentest Laboratorcès Masing the Nowe a Quetor Prace， One Ericit Mad bientist at a Sime

DISTRIBUTED BY EVIL MAD SCIENCE LLᄃ

SபPPロRT：HTTP：／／WWW．EVILMADSCIENTIST．CロM／FロRUM／

Tour

Printed circuit board:
 Overall size: 12 " $\times 15$ "

$(30.5 \times 38.1 \mathrm{~cm})$

Transistors and resistors along left edge of LED field.

Big CPU: ATmegal 64, an AVR microcontroller.

Also: light sensor, switches, buttons, places to hack in...

The 25 Rows and 25 columns are numbered along the edges, 0-24

LED Field: Each location has room for a 10 mm LED, although smaller 5 mm (T-| 3/4, "standard size") and 3 mm LEDs will work just as well.
(US Quarter for scale)

Bottom center and right: power management

Detailed tour: Lower left corner of board

Optional AVR-ISP interface: leave empty by default.
[Fits a 6-pin DIL header--

Optional clock area: leave empty by default.
[Can use a 3-pin ceramic resonator or
a (two-pin) low power crystal along with two caps.]
"On" button actually resets microcontroller.
(Other functions are handled in software,
can potentially be changed.)

Detailed Tour: Lower center of board

Two horizontal rows: possible places to put resistors;
Usually all "RL" locations are filled and all "RJ" locations are left empty

h6	50	25	1		10				10	: 11	10		10	R.t1	10		100	2.15	$\stackrel{0}{1}=1 \mathrm{k}$	10	$\text { R. } 17$	$\stackrel{0}{-1}$	$x+18$	50	PL?
108	10	20	10	v8	10		0	P2n	$1-0$	E3I	0	vat2	5	283	$\stackrel{0}{1}$	R2H+	$\begin{aligned} & 1-0 \\ & 0-1 \end{aligned}$	245	$\stackrel{0}{0} 10215$	10	2017	$1-1$	278		pow

Normally empty.

Optional power jack

What do you make of this?

Our standard assembly instructions, beginning on the next page, will produce a static "pegboard" display, that will light up LEDs in whichever locations you choose to install them, with near-uniform illumination.

They will be driven in an energy-efficient multiplexed arrangement and the infrared light sensor can be used to turn on the display when it gets dark.

Reprogramming the "smart" display is possible, however note that the LEDs are not individually addressable.

Hardware hackers may want to flip through the schematics (pages 13-15) before going further to see if inspiration strikes. It is, for example, potentially possible to reconfigure this display to produce limited, simple animations-- with additional electronics and programming. Many other hacks and mods are possible as well-- the circuit board was actually designed with hacking in mind. Places have been left to put certain extra components that you might want and holes have been added to allow direct access to the microcontroller pins.

If you do wish to reprogram the display, you will need to supply a 6-pin DIL header and an AVR hardware programmer with a 6-pin ISP interface. (We recommend the USBtinyISP by Adafruit Industries.)

Assembly: First steps

I.Add resistors RA1, RA3, RA4

5.1 k resistors (Green-Brown-Red-Gold), installed in 3 places.

Implied procedure for components like this:

- Bend the leads of a resistor as shown
- Place it in the circuit board, at its location
- Solder the two pins from the back side
- Clip off extra leads on back side.

2.Add resistors RA2, RB0-RB24

1.0 k resistor (Brown-Black-Red-Gold), installed in 26 places.

RBO-RB24 are located along the left side of the circuit board. Note: Be careful to avoid making solder bridges between the pins.

3. Add wire jumpers JP2, JP3
 Jumpers are Zero-ohm resistors (One black stripe), installed in 2 places.

4.Add slider switch S1

Match the part to the white outline drawing on the circuit board.
Solder all five pins.

Assembly: More stuff to solder

5. Install socket for U1

A 40-pin DIP socket.
Orientation matters. Match the half-moon shape at one end of the socket to the one drawn on the circuit board. Solder it in place. (Same for chip, later.)

6. Install capacitor C3

1000 uF electrolytic cap
Orientation matters. The NEGATIVE side of the capacitor is marked with a broad white stripe.
 Solder it with this negative side towards "-" on the circuit board.

7. Install capacitor C5

I uF ceramic cap (Orientation: Either way.)

9. Install phototransistor QAI

LTR-3208E, infrared sensor with dark lens
Orientation matters. Long lead goes in the square hole. The flat face of the sensor lines up with the outline drawing.
Match the parts to the drawing on the circuit board.
Orientation: pins stick out on left and right sides, not top and bottom.

Solder all four pins of each switch.

Assembly: Resistors \& Transistors, oh my!

10.Add resistors RLO- RL25

75 ohm resistor (Violet-Green-Black-Gold), installed in 26 places.

RLO-RL25 are in a wavy row at the bottom of the LED field.

Note: RJO-RJ25 should be left empty.

Assembly: Power supply details

Procedure depends on the type of ac adapter (if any) that you are using:

	Battery Only (4.5V DC)	US/Canada Power supply (4.5 V DC)	International Power supply (5V DC)
Jumper JPI	Install	Empty	Empty
Power Jack J2	Empty	Install	Install
Power source switch S4	Empty	Install	Install
Diode DPI	Empty	Use wire jumper	Use Schottky diode
Can still run on battery	No. (Just kidding!)	Yes	Yes

I2. (Battery only)

Install a wire jumper (Zero-ohm resistor) in location JPI.
$\mathrm{J} 2, \mathrm{S4}$, and DPI are left empty.
\mid Rux 45 uDC I lopud

[a

I2. (US/Canada 4.5 V power supply) Install power jack J2, Switch S4 and Install wire jumper (Zero-ohm resistor) in location DPI.

Location JPI is left empty.
12. (International 5 V power supply) Install power jack J2, Switch S4 and Install Schottky diode in location DPI.

Location JPI is left empty.

Install Battery Box

13. Add battery box

Held in place with cable ties, wired up with a pair of wire jumpers.
(Note: If you have an alternate power source,
e.g., you plan to run from an AC adapter all the time, you can skip this step without ill effect.)
"Solder lug" at positive terminal of battery box

Assembly:Adding Chip \& LEDs

14.Add microcontroller U I

The ATmega 164P chip goes in the 40-pin socket from step 5.
Pay attention to the orientation!

If necessary, bend the leads of the chip to straight up and down before inserting the chip into the socket.
Do not bend them by hand; bend all pins on one side at a time by pushing them against a hard flat surface.

From end of chip:

The chip goes into the socket with firm, even pressure.

15. Add LEDs to the LED field.

The board accommodates up to 625 LEDs in standard sizes up to $10 \mathrm{~mm} .3 \mathrm{~mm}, 5 \mathrm{~mm}$, and 8 mm LEDs will work just fine. Put them where you like, or everywhere.

For standard types of LEDs, the long lead goes in the square hole (the one on the left), and the flat face of the LED package matches the drawing on the circuit board.

It is recommended that only blue, green, white, and purple LEDs be used-- some resistors may need to be adjusted if you wish to use other LED colors instead.
Mixing red/orange/yellow with blue/green/white types does not generally work well.
For reference, each LED location is labeled $D X X Y Y$, where $X X$ is the row number and $Y Y$ is the column number. If you do not fill all the holes and wish to blacken the unused labels, a black permanent marker works well.

[^0]
Long lead
Flat face

00

LED placement tricks

Alternative build idea \#I: put all the LEDs on the back side of the circuit board. In this case, the long lead still goes in the square hole.

Normal: Long lead into square hole

When the grid really won't do, the LEDs can go between grid locations!

For all variations:
Side of LED with long lead still goes to square hole. Side with flat still goes to round hole.

And so forth....

Wrapping it up!

Last step: Add the rubber feet
Attach one rubber foot in each corner on the back side of the circuit board-- make sure that the circuit board lies flat on these bumpers, not on wire leads.

These will help to avoid accidental short circuits, as well as protect your wall if you hang it up by a hook or string.

An open-source project

The hardware and software designs used in this project are being released under an open-source license. For more information, please see:
http://www.evilmadscientist.com/article.php/peggy
The firmware is written in AVR-GCC, and we'd love to see what you can do with it!

Got pictures?

If you have interesting pictures of things built using this kit or the hardware or software designs, we'd love to see them in the Evil Mad Science Auxiliary:
http://www.flickr.com/groups/evilmadscience/

Schematics: Page I of 3

An Open-Source Design by Evil Mad Scientist Laboratories
www.evilmadscientist.com

Fabricated for
Evil Mad Science LLC
http://evilmadscience.com

Mre A light-emiting pegboard display pane

Schematics: Page 2 of 3

Schematics：Page 3 of 3

		彦	䂭	${ }^{\frac{1}{\text { ⿳亠丷厂彡}}}$	喜	意	哑	${ }^{\text {亳 }}$	旁	旁	谚	$)^{\frac{\text { 亳 }}{}}$			$\Gamma_{\frac{7}{3}}^{\frac{7}{3}}$	${ }^{\text {䂴 }}$	$\square^{\text {颜 }}$		${ }^{\text {旁 }}$	旁		粊		颜	
	$\begin{aligned} & \square 01200 \\ & y_{0} \\ & 0^{\circ} \end{aligned}$	$\begin{aligned} & 7_{01201} \\ & a_{0} \\ & a_{0}^{0} \end{aligned}$		$\begin{aligned} & \square_{01203} \\ & y_{0} \\ & 0_{0} \end{aligned}$	701204		$\begin{aligned} & 7_{01206} \\ & y_{0}^{0} \\ & 0_{0} \end{aligned}$	$\square^{\text {Dip20 }}$	70108	$\begin{aligned} & \square_{01209} \\ & y_{0}=0 \end{aligned}$	\square^{01210}	$\square^{0}{ }^{\text {0121 }}$		$\begin{aligned} & \square_{01213} \\ & y_{0} \\ & 0 \end{aligned}$	0	$\square^{\text {O1215 }}$	$\square^{\text {pol2 }}$		$\square^{\text {D1218 }}$		$\square^{0.1200}$	${ }^{-0}$		$7^{\text {di223 }}$	7_{0}^{0024}
	$\begin{aligned} & 7_{01300}^{0} \\ & 0.0 \\ & 0 \end{aligned}$		\square_{0}^{01302}		${ }^{\circ}$	\square_{0}^{01005}	$\square^{\square 0}$		l_{01308}^{00}		\square_{0}^{0130}			$\underbrace{01313}_{0}$		（013	\square_{0}^{01316}		\square_{0}^{0138}	\square_{0}^{019}	\square_{0}^{01320}		$\square^{\text {Di322 }}$		
	p_{0}^{0}		$)_{0}^{0} 0$	${ }^{7}$	$\underbrace{004}_{00}$	$\mathrm{T}_{0} 0_{0}$			V_{0}^{01408}	\square_{0}^{01409}	P_{0}^{10140}	$7^{\substack{\text { D．441 }}}$	－${ }_{\text {Di412 }}$	$\mathrm{Jic}_{0}^{\text {Di413 }}$		－${ }^{\text {Di415 }}$	P_{0}^{0}	l^{101477}	$\underbrace{0}_{0} 0$	$\mathrm{P}_{0}^{0.149}$	P_{0}^{1004}	$\underbrace{0}_{0}$		$\square_{00123}{ }_{0}$	$]_{00}^{01424}$
	$\begin{aligned} & D_{01500} \\ & y_{0} \\ & 0_{0} \end{aligned}$		Dis02	701503 \square_{0}^{00}	${ }^{0.1504}$	${ }^{10} 0$	\square^{701506}		$\overbrace{0} \square_{01508}$	\square_{0}^{01509}	\square_{0}^{10510}		（ ${ }^{71512}$	\square^{01513}	\square_{0}^{01514}			${ }^{701577}$	\square_{0}^{01518}	$\overbrace{0}^{0.519}$	$\square_{0}^{0}{ }_{0}^{0}$	－${ }^{-1521}$	${ }^{0}{ }^{0} 1522$	701523 $0_{0} 0^{8}$	7_{00}^{004}
	$\begin{aligned} & 7_{0,600}^{0} \\ & y_{0}^{0} \end{aligned}$	$\frac{l_{\text {Dit00 }}}{\substack{10}}$	，		－${ }_{\text {Di604 }}$	\square_{0}^{01005}			$\begin{aligned} & D_{11008} \\ & y_{0} \\ & 0_{0}^{0} \end{aligned}$		$\begin{aligned} & 7_{01610} \\ & y_{0} \\ & 0_{0} \end{aligned}$	$\begin{aligned} & 7 D_{01611} \\ & y_{0} 0_{0} \end{aligned}$	$\begin{aligned} & D_{01612} \\ & \frac{10}{0_{0}} \end{aligned}$	$\begin{aligned} & y_{01613} \\ & 0_{0} \\ & 0 . \end{aligned}$	$\begin{aligned} & 70614 \\ & y_{0} \\ & y_{0} \end{aligned}$	$\begin{aligned} & \overbrace{01615} \\ & y_{0} \\ & b_{0} \end{aligned}$			${ }^{\text {Do618 }}$		$\begin{aligned} & 7_{01620} \\ & 0_{0} \end{aligned}$	$\begin{aligned} & y_{01621} \\ & y_{0} \\ & 0_{0} \end{aligned}$			$]_{0}^{01624}$
			－${ }_{0}^{0}$		－${ }^{0} 1704$	\square^{01705}	\square^{101706}	$\begin{aligned} & 7_{01707} \\ & \frac{1}{5} \\ & \hline 0 \end{aligned}$	$\frac{\square}{0}$	－\square_{0}^{01709}	－${ }^{0}$	$\begin{aligned} & b_{01711} \\ & \frac{1}{b_{0}} \\ & b_{0} \end{aligned}$		$\begin{aligned} & b_{01713} \\ & b_{0} \\ & 0_{0} \end{aligned}$				－	¢0078	$\overbrace{0}^{0}$	$\frac{\square}{0000}$	\square^{-1721}			$\square^{0.1724}$
	$\overbrace{0}^{01800}$		0^{-1802}	\square^{701003}		\square_{0}^{0805}	70806 $0^{0} 8$		\square^{01808}	J_{0}^{01809}	\square_{0}^{01810}		${ }^{-1812}$	\square_{0}^{01813}	\square_{0}^{01814}	${ }^{\circ} \mathrm{D} 1815$	\square_{0}^{01816}	7^{7017}		$\overbrace{0}^{01819}$	$\square_{\text {Di820 }}^{\substack{0}}$	${ }^{\circ} 18821$	\square^{10}	${ }^{\text {D0183 }}$	7_{0}^{-1824}
	$\begin{aligned} & 7.1900 \\ & y_{0} \\ & 00^{\circ} \end{aligned}$	$\begin{aligned} & 7_{01901} \\ & a_{0} \\ & a_{0} \end{aligned}$		$\begin{aligned} & 7_{01903} \\ & y_{0} \\ & \hline 0 \end{aligned}$			$\begin{aligned} & 7.1006 \\ & 7_{0}^{5} \\ & 0_{0} \end{aligned}$	$\begin{aligned} & 7_{01907}^{0} \\ & \frac{1}{0} \end{aligned}$	$\begin{aligned} & D_{01908} \\ & y_{0} \end{aligned}$	$\begin{aligned} & 70.199 \\ & y_{0} \\ & 0 \end{aligned}$	$\begin{aligned} & 7_{01910} \\ & 0_{0} \end{aligned}$	$\begin{aligned} & 7_{01911} \\ & y_{0} \\ & \hline 0 . \end{aligned}$		$\begin{aligned} & 7_{01913} \\ & 0_{0} \\ & 0 \end{aligned}$	$\begin{aligned} & 7014 \\ & D_{0} \\ & 0_{0} \end{aligned}$			$\begin{aligned} & 7_{01917} \\ & y_{0} \\ & \hline 0 . \end{aligned}$		［0909	$\xrightarrow{709}$	litar	Vi192	${ }^{7}$	
	\square_{00000}^{10000}	l^{102001}	${ }^{102002}$	$\underbrace{70203}$		${ }^{70005}$	70206	$\begin{aligned} & 7_{02007}^{-0} \\ & 80 \\ & 0 . \end{aligned}$	${ }^{702088}$	${ }^{\text {D2009 }}$	${ }^{\circ}$	70201 $7_{0} 0^{0}$	$\underbrace{102012}_{0}$	$\sqrt{0} 5_{10013}^{0}$	\square^{102014}	${ }^{\text {D2015 }}$	\square^{202016}		7^{102018}	\square^{102019}	H_{0}	${ }_{0}^{102021}$	－${ }^{\text {02022 }}$	$7^{\text {D2023 }}$	
	$\begin{aligned} & 7_{02100} \\ & 0 \\ & 0 . \end{aligned}$	$l^{10201}{ }^{1}$			－${ }_{\text {D204 }}$	$\square^{0} 0$					\％o210	\square \square_{0211} \square_{0} 0	${ }^{7}$	${ }^{10213}$	70214 ${ }^{\text {020 }}$	los		70217 700 0.0		\％		$\xrightarrow{1021}$			${ }^{-1024}$
	$\begin{aligned} & { }^{0} 0200 \\ & y_{0} \\ & 0 \end{aligned}$	$\underbrace{10201}$	$]_{0}^{0202}$		$\overbrace{0}^{0204}$	$]_{0}^{02005}$	${ }^{70206}$	7^{10207}	\square_{0}^{0208}	\square_{0}	${ }^{\circ}$	$\underbrace{702211}$	\prod_{0}^{10212}	\prod_{0}^{10213}	\square_{0}	$)_{0}^{02215}$	\square_{0020}	\square°	\prod_{0}^{10218}	$]_{0}^{02219}$	$\overbrace{0}^{0220}$	\square_{0}^{0221}	［10202	7^{-82233}	$]_{0}^{0} 0$
	$\begin{aligned} & 70200 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 10202 \\ & y_{0} \\ & 0 \end{aligned}$			$\begin{aligned} & 7_{0205}^{-0} \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 7_{02307}^{-0.07} \\ &]_{0}^{0} \end{aligned}$				$\begin{aligned} & 7_{02311} \\ & \overbrace{0}^{4} \\ & 0^{\circ} \end{aligned}$	$\begin{aligned} & 7_{02312} \\ & y_{0} \\ & \hline 0 \end{aligned}$		$\begin{aligned} & 7_{02314}^{4} \\ & y_{0} \\ & \hline 0 \end{aligned}$		$\begin{aligned} & 7_{02316}^{\prime} \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & y_{02319}^{-0} \\ & y_{0}^{0} \end{aligned}$		lioze	70332 0° 0		－0232
	$\begin{aligned} & 10200 \\ & l_{0} \\ & 0.0 \end{aligned}$		$\begin{aligned} & 7_{02020} \\ & 0_{0} 0_{0} \end{aligned}$	$\begin{aligned} & 70203 \\ & \frac{1020}{10} \end{aligned}$	$\begin{aligned} & 7_{0204}^{0} \\ & 0_{0} \end{aligned}$	$\begin{aligned} & 7_{0205} \\ & 0_{0} \\ & 0_{0} 0^{\circ} \end{aligned}$	$\begin{aligned} & 7_{0206} \\ & 0.0 \\ & 0 \end{aligned}$	$\begin{aligned} & 7_{0207} \\ & \frac{10}{0} \\ & \frac{0}{0} \end{aligned}$	$\begin{aligned} & 10208 \\ & y_{0} 0_{0} \\ & \hline \end{aligned}$		$\begin{aligned} & { }^{02410} \\ & 0.0 \\ & 0 \end{aligned}$		$\begin{aligned} & { }^{102412} \\ & \frac{2}{0} 0^{\circ} \end{aligned}$	$\begin{aligned} & { }^{02413} \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 70245 \\ & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & B_{0246} \\ & 0_{0} \\ & 0_{0} \end{aligned}$		$\begin{aligned} &]_{0248} \\ & 0.04 \\ & 0.0 \end{aligned}$		$\begin{aligned} & 0_{0220} \\ & y_{0} 0_{0} \end{aligned}$	$\begin{aligned} & 70221 \\ & =0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 7.0242 \\ & \frac{10}{0.0} \\ & 10 \end{aligned}$		

An Open－Source Design by Evil Mad Scientist Laboratories www．evilmadscientist．com

Fabricated for
Evil Mad Science LLC
http：／／evilmadscience．com／

Flee LEDdisp X．sch $\left.\right|^{\text {Revsolv：}}$

[^0]: See additional notes on following page.

